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Abstract. We present a review of selected equilibrium models for the study of the struc-
ture and dynamics of globular clusters, with emphasis on the role of rotation and pressure
anisotropy.
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1. Introduction

As a zeroth-order dynamical description, glob-
ular clusters may be considered as quasi-
stationary systems, close to a thermodynam-
ically relaxed state. These assumptions al-
lows us to describe them in terms of a phase
space distribution function that depends only
on the single-star energy, thus characterized by
isotropy in the velocity space. The additional
assumption of spherical symmetry greatly sim-
plifies the formal construction of the models.

Within the set of assumptions described
above, a number of simple equilibrium self-
consistent models can be defined. Among the
historical results, polytropic spheres played an
important role, but the most popular family in
the class of quasi-relaxed models for globular
clusters is defined as a Maxwellian distribution
function, characterized by the presence of a
truncation which is continuous in energy (King
1966). Such a phase space truncation prescrip-
tion is non-unique, and it is essential in shaping
the behavior of the potential, and, therefore, of
all velocity moments, especially in the prox-
imity of the truncation radius (Hunter 1977;
Davoust 1977).

This class of models has been the backbone
of our current understanding of the dynamics
of globular clusters, but the soon available full
phase space information (i.e., the synergy be-
tween Gaia and HST proper motion studies and
ground-based spectroscopic surveys) screams
for a proper treatment of some physical ingre-
dients traditionally considered as “second or-
der complications”. More realistic equilibrium
models are a possible tool to fulfill such a need.

Broadly speaking, two complementary
paths can be followed for the construction
of equilibrium dynamical models. In the first,
“descriptive” approach, under suitable geomet-
rical (on the intrinsic shape) and dynamical
(e.g., on the absence or presence of dark mat-
ter) hypotheses, the available data for a given
stellar system are imposed as constraints to
derive the internal orbital structure (or phase
space distribution function). This approach is
often carried out in terms of schemes that gen-
eralize a method introduced by Schwarzschild
(1979). In the second, “predictive” approach,
one proposes a formation/evolution scenario in
order to identify a physically justified distribu-
tion function for a class of systems, and then
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proceeds to investigate, ideally by comparison
with observations of several individual objects,
whether the data support the general physical
picture that has been proposed. In this paper,
we will focus mostly on the second approach,
with the goal of reviewing some of the efforts
that have been put forward by the communities
studying the dynamics of globular clusters and
galaxies, with emphasis of two physical ingre-
dients: rotation and pressure anisotropy.

This paper should be considered as a sum-
mary of the narrative underlying the contri-
bution presented at MODEST 16, and we en-
courage the reader to refer to the presentation
slides to consult the appropriate equations, fig-
ures (and portraits!), which are omitted here.

2. Rotation

In consideration of the fact that globular clus-
ters exhibit only modest amounts of flattening
and given the success of the spherical, low-
ered isothermal models, relatively little work
has been carried out in the direction of the con-
struction of stationary self-consistent rotating
models specifically designed for this class of
stellar systems (with some exceptions, which
we will mention below). Therefore, much of
the currently available knowledge of the struc-
ture and dynamics of rotating stellar systems
stems from studies originally intended to in-
vestigate the properties of elliptical galaxies.

Equilibrium models of stellar systems with
non-vanishing total angular momentum may
be classified into two fundamental categories,
as characterized by rigid or differential rota-
tion, respectively. In the first case, it is well
known that in the presence of finite total angu-
lar momentum of the system, relaxation leads
to solid-body rotation (e.g., see Landau &
Lifchitz 1967), i.e., in the statistical mechan-
ical argument that leads to the derivation of
the Maxwellian distribution, one finds that,
in the final distribution function, the single
star energy is replaced by the Jacobi integral.
Following this picture, we may consider the ex-
tension of many simple isothermal equilibria
to the case of internal rigid rotation (for mod-
els with discontinuous and continuous trunca-
tion, see Kormendy & Anand 1971 and Varri &

Bertin 2012, respectively). One of the beauties
of this class of models lies in the fact that they
may be constructed by means of an (almost
completely analytical) perturbation approach.
The construction of rigidly rotating configu-
rations characterized by nonuniform density
is indeed a classical problem in the theory
of rotating stars (Milne 1923; Chandrasekhar
1933), but it is mostly limited to the study
of fluid systems with a polytropic equation of
state. In this context, a valuable contribution is
represented by the work by Vandervoort (1980)
on the collisionless analogues of polytropes, as
well as the Maclaurin and Jacobi ellipsoids.

On the side of differentially rotating equi-
libria (which, almost inevitably, translates into
models characterized by both rotation and
pressure anisotropy), many of the currently
available modeling tools go back to the pio-
neering work of Prendergast & Tomer (1970)
and Wilson (1975), intended to describe el-
lipticals, and of Jarvis & Freeman (1985) and
Rowley (1988), devoted to bulges. In all cases,
the models are self-consistent, i.e., they are ob-
tained by solving the relevant Poisson equa-
tion, often by means of an iterative approach;
such a scheme typically requires, at each iter-
ation step, the expansion in Legendre series of
the density and the potential, and the associated
radial Cauchy problems are often expressed in
integral form.

Since the family of models initially pro-
posed by Jarvis & Freeman (1985) reduces, in
the limit of vanishing rotation, to King (1966)
models, they have naturally become the pre-
ferred choice for the initial conditions of many
numerical investigations of the role of angu-
lar momentum in the dynamical evolution of
globular clusters (see Lagoute & Longaretti
1996; Einsel & Spurzem 1999, and many other
Fokker-Planck and N-body studies). A remark-
able effort for the construction of a family of
models specifically designed for the descrip-
tion of globular clusters, and characterized by
three integrals of the motion, has been put for-
ward by Lupton & Gunn (1987), with an ap-
plication to M13. More recent examples in-
clude the two-integral equilibrium models pre-
sented by Varri & Bertin (2012), with applica-
tions to selected Galactic globulars (Bianchini
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et al. 2013). An alternative approach for the
construction of phase space equilibria is based
on the use of actions instead of integrals of
the motion; a refreshing example of this line
of attack, with a possible application to rotat-
ing systems, has been proposed by Posti et al.
(2015).

3. Anisotropy

The dynamical interpretation of globular clus-
ters as quasi-relaxed stellar systems present
some limitations also with respect to the as-
sumptions on the velocity dispersion tensor. In
this respect, possible deviations from isotropy
in the velocity space may be explored along
two complementary lines of argument. On the
one hand, after many decades of progressively
more realistic numerical simulations, it is well
known that the dynamical evolution of colli-
sional stellar systems, as driven by internal and
external processes, has a strong effect on their
phase space properties. On the other hand, we
might also ask whether, especially for globular
clusters characterized by long relaxation times,
any signature of their formation process may
actually be preserved in phase space.

In the first case, pioneering numerical in-
vestigations have shown that anisotropy is in-
deed a natural outcome of star cluster evolu-
tion, especially when the system is in isolation
(Hénon 1971; Spitzer & Shapiro 1972). Spitzer
(1987) showed that during their evolution, iso-
lated globular clusters develop a structure com-
posed by two distinct regions: an isotropic
core, and a radially anisotropic halo of stars,
resulting from the scattering of stars from the
center, preferentially on radial orbits. Idealized
models of star clusters based on gaseous and
N-body methods have later confirmed that iso-
lated systems tend to become progressively
more anisotropic in their outer regions (e.g.,
see Bettwieser & Spurzem 1986; Giersz &
Spurzem 1994).

This picture has been extended with the in-
clusion in the models of the presence of an
external tidal field, the effect of which is typ-
ically to curb the degree of radial anisotropy
developed, most likely as a result of the mass
loss, which progressively exposes deeper and

therefore more isotropic shells of the stel-
lar system (e.g., see Giersz & Heggie 1997).
As a result, the anisotropy profiles remains
radially-biased at intermediate radii, while it
becomes isotropic (or even mildly tangential,
see Baumgardt & Makino 2003) in the outer re-
gions. Given these two limiting cases, it should
not come as a surprise that the degree of radial
anisotropy developed in a system strongly de-
pends on the strength of the tidal field in which
it is evolving (Tiongco et al. 2016).

On the side of distribution function-based
models, these ideas have inspired the construc-
tion of simple equilibria, defined as a direct
generalization of lowered isothermal models,
in which the second integral of the motion
is considered to be the specific angular mo-
mentum, often introduced via an exponential
dependence (see Michie 1963; Davoust 1977,
and, more recently, Gieles & Zocchi 2015).
These models have been successfully applied
to the interpretation of both observational data
(e.g., see Gunn & Griffin 1979) and numerical
simulations (Zocchi et al. 2016).

As for the investigation of possible forma-
tion signatures, it might very well be that, es-
pecially for particularly rich and initially un-
derfilled globulars, their outer structure is not
too far from that of bright elliptical galaxies
for which violent relaxation is thought to have
acted primarily to make the inner system quasi-
relaxed, while the outer parts are more and
more dominated by radially-biased anisotropic
pressure. This line of argument motivated the
development of several families of dynamical
models, to represent the final state of numerical
simulations of the violent relaxation process
(e.g., see van Albada 1982), as thought to be
associated with the formation of bright ellipti-
cal galaxies via collisionless collapse (Stiavelli
& Bertin 1985; Trenti et al. 2005).

These models show a characteristic
anisotropy profile, with an inner isotropic core
and an outer envelope that becomes dominated
by radially-biased anisotropic pressure. After
a first successful applicqation to the study of
a sample of Galactic globular clusters under
different relaxation conditions (Zocchi et
al. 2012), these models have been recently
modified to include an appropriate truncation
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in phase space, to heuristically mimic the
limitation induced by the tidal field of the host
galaxy (De Vita et al. 2016).

In this context, we wish to mention also
some recent numerical experiments of vio-
lent relaxation, conducted in the presence of
an external tidal field (Vesperini et al. 2014).
Interestingly, the resulting configurations are
characterized by differential rotation, and an
anisotropy profile which is isotropic in the cen-
tral regions, radial in the intermediate ones,
and isotropic (or mildly tangential) in the out-
skirts, in qualitative agreement with Varri &
Bertin (2012) models.

4. Conclusions

With these equilibria in hand, what should one
do? First of all, in light of the growing impor-
tance of the kinematic and phase space explo-
ration of globular clusters, these models should
enable us to take up the new observational
challenges of the forthcoming “era of precision
astrometry”. Second, their stability properties
should be carefully studied. Third, they may be
used as a controlled playground for developing
our fundamental understanding of the phase
space behavior of anisotropic, non-spherical,
rotating stellar systems. Finally, we may con-
sider to increase their complexity by introduc-
ing additional physical ingredients, such as the
presence of (i) multiple mass components, (ii)
intermediate-mass black holes, (iii) a more re-
alistic prescription for the treatment of the tidal
field, and (iv) the phase space contributions of
a population of “potential escapers”.

As parting thoughts, we wish to emphasize
that study of the role of “classical” physical
ingredients, such as rotation, anisotropy and
tides, is a key step to understand any dynam-
ical signature of more complex phenomena in
star clusters, and that interesting (new) science
may live at the (often unexplored) intersection
of such classical ingredients.
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